SOLUTION TO MATHEMATICAL LOGIC

- Q1. Use appropriate symbols and connectives to express the following SYMBOLICALLY
 - 01. Dhanashri is beautiful and she is intelligent = $p \land q$
 - where p = Dhanashri is beautiful
 - q = Dhanashri is intelligent
 - 02 Either we play Kabaddi or go for cycling = $p \lor q$
 - where $p \equiv$ We play Kabaddi
 - q = We go cycling
 - 03. Ashok failed or Nirmala passed and she is happy = $p \lor (q \land r)$
 - where p = Ashok failed
 - q = Nirmala passed
 - r = Nirmala is happy
 - 04. Pinku never works hard yet she gets good marks = $\sim p \land q$

(Pinku does not work hard and still she gets good marks)

- where $p \equiv Pinku$ works hard
 - q = Pinku gets good marks
- 05. Though <u>G</u>od created man , <u>M</u>an created many $= p \land q$

(God created Man and Man created Many)

where p = God created Man

- q = Man created Many
- 06. Eventhough it is not cloudy, it is still raining $= -p \wedge q$

(It is not cloudy and still it is raining)

where $p \equiv It is cloudy$

- q = It is still raining
- 07. The drug is effective though it has side effects = p \ q
 (The drug is effective but (and) it has side effects)
 where p = The drug is effective
 - q = The drug has side effects

- 08. Inspite of bad weather , India won the cricket match = p ^ q
 (the weather is bad and still India won the cric ket match)
 where p = The weather is bad
 q = India won the cricket match
- 09. Yuvraj neither plays cricket nor tennis = ~ p ^ ~ q
 (Yuvraj does not play cricket and he does not play tennis)
 where p = Yuvraj plays cricket
 q = Yuvraj plays tennis
- 10. It may or may not rain but sky is cloudy = $(p \lor \sim p) \land q$

where p = It may rain q = The sky is cloudy

- 11. If Kutub Minar is in Delhi then Hyderabad is in Andhra Pradesh $\equiv p \rightarrow q$ where $p \equiv Kutub - Minar is in Delhi$ $q \equiv Hyderabad is in Andhra Pradesh$
- 12. Two triangles have equal areas only if they are congruent $\equiv p \rightarrow q$ (Recall : Rhombus only if parallelogram means Rhombus \rightarrow Parallelogram) where $p \equiv$ Two triangles have equal areas
 - q = two triangles are congruent
- 13. It is not true that Subhash passed , then he is happy = \sim ($p \rightarrow q$)

where p = Subhash passed q = Subhash is happy

14. If the question is not <u>e</u>asy then we not <u>fail</u> = $\sim e \rightarrow \sim f$

where e = The question is easy f = we will fail

- 15. if Pravin likes a radio programme and the programme is a sponsored programme then the programme is not in the evening before 7 O'clock = (p ∧ q) → ~ q
 where p = Pravin likes a radio programme
 q = the programme is a sponsored programme
 - r = programme is in the evening before 7 O'clock

- 16. ABC is a triangle hence the points A, B & C are not collinear $\equiv p \rightarrow \sim q$ (means : if ABC is a triangle then points A , B & C are not collinear) where $p \equiv ABC$ is a triangle $q \equiv points A$, B & C are collinear
- 17. A person is successful only if he is a politician or he has good connections

p → (q ∨ r)
 (Recall : 'only if' stands for 'implies')
 where p = A person is successful
 q = A person is a politician
 q = A person has good connections

18. As Ram is tall he can be a good basket ball player $= p \rightarrow q$ (means : if Ram is tall then he can be a good basket ball player)

where p = Ram is tall

- q = Ram can be a good basket ball player
- 19. $\sqrt{25} = 4$ is necessary condition for the number 8 to be an even number

(Try to understand this : Parallelogram is necessary condition for rhombus and hence we say " if Rhombus then it is a parallelogram

 \therefore the above statement should be read as if 8 is even then condition for that is $\sqrt{25}$ = 4)

= $p \rightarrow q$ where p = 8 is an even number $q = \sqrt{25} = 4$

20. Milk is white if and only if the sky is not blue = $p \leftrightarrow \sim q$

where p = Milk is white q = Sky is blue

Q2. CONSTRUCT TRUTH TABLES

р	q	~p	p ^ q	(p ^ q) ^ ~p
Т	Т	F	Т	F
Т	F	F	F	F
F	Т	Т	F	F
F	F	Т	F	F

2. (~p v q) ^ (~p ^ ~q)

р	q	~ p	~ q	~p ∨ q	~p ^ ~q	(~p ∨ q) ∧ (~p ∧ ~q)
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	Т	Т	т

3. (p ∧~q) ∧ ~(q ∧ ~p)

р	q	~ p	q ~	p ^ ~q	q ^ ~p	~(q ^ ~p)	(p ^~q) ^ ~(q ^ ~p)
Т	Т	F	F	F	F	Т	F
Т	F	F	Т	Т	F	Т	Т
F	Т	Т	F	F	Т	F	F
F	F	Т	Т	F	F	Т	F

4. $(p \land q) \rightarrow (p \lor \sim q)$

р	q	~ q	p ^ q	p ∨ ~q	$(p \land q) \rightarrow (p \lor \sim q)$
Т	Т	F	Т	Т	Т
Т	F	Т	F	Т	Т
F	Т	F	F	F	Т
F	F	Т	F	Т	Т

5. $(p \rightarrow q) \leftrightarrow (\sim p \lor q)$

р	q	~ p	$p \rightarrow q$	~p ∨ q	$(p \rightarrow q) \leftrightarrow (\sim p \lor q)$
Т	Т	F	Т	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

$$\delta. \qquad (p \land \sim q) \leftrightarrow (q \rightarrow p)$$

р	q	~ q	p ^ ~q	$q \to p$	$(p \land \neg q) \leftrightarrow (q \rightarrow p)$
Т	Т	F	F	Т	F
Т	F	Т	Т	Т	Т
F	Т	F	F	F	Т
F	F	Т	F	Т	F

7. $(\sim p \vee \sim q) \leftrightarrow \sim (p \wedge q)$

р	q	~ p	~ q	~p v ~q	p ^ q	~ (p ^ q)	$(\sim p \lor \sim q) \leftrightarrow \sim (p \land q)$
Т	Т	F	F	F	Т	F	Т
Т	F	F	Т	Т	F	Т	Т
F	Т	Т	F	Т	F	Т	Т
F	F	Т	Т	Т	F	Т	Т

Q3. Determine whether the following statement pattern is TAUTOLOGY or CONTRADICTION or neither

1.
$$[p \land (p \rightarrow q)] \rightarrow q$$

р	q	$p \rightarrow q$	$p \land (p \rightarrow q)$	$[p \land (p \rightarrow q)] \rightarrow q$
Т	Т	Т	Т	T
Т	F	F	F	T
F	Т	Т	F	Т
F	F	Т	F	T

Since all the truth values in the last column are 'T' , given statement is 'Tautology'

2. $(\sim p \lor q) \lor (q \rightarrow p)$

р	q	~ p	~p ∨ q	$q \to p$	(~p ∨ q) ∨ (q → p)
Т	Т	F	Т	Т	T
Т	F	F	F	Т	т
F	Т	Т	Т	F	Т
F	F	Т	Т	Т	Т

Since all the truth values in the last column are 'T' , given statement is 'Tautology'

3. $(p \land \neg q) \leftrightarrow (p \rightarrow q)$

р	q	~ q	p ^ ~q	$p \to q$	(p ∧ ~q) ↔ (q → p)
Т	Т	F	F	Т	F
Т	F	Т	Т	F	F
F	Т	F	F	Т	F
F	F	Т	F	Т	F

Since all the values in the last column are 'F' , given statement is 'Contradiction'

4. $(p \land q) \land (p \rightarrow \neg q)$

٩	q	~ q	p ^ q	p → ~q	(p ∧ q) ∧ (p → ~q)
Т	Т	F	Т	F	F
Т	F	Т	F	Т	F
F	Т	F	F	Т	F
F	F	Т	F	Т	F

Since all the values in the last column are 'F' , given statement is 'Contradiction'

|--|

р	q	r	~p	~q	~p ^~q	q ∧ r	(1 ^ p) ^ (p~^ q~)
Т	Т	Т	F	F	F	Т	F
Т	Т	F	F	F	F	F	F
Т	F	Т	F	Т	F	F	F
Т	F	F	F	Т	F	F	F
F	Т	Т	Т	F	F	Т	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	Т	Т	F	F
F	F	F	Т	Т	Т	F	F

Since all the values in the last column are 'F' , given statement is 'Contradiction'

Q3. Prove that the following statements are LOGICALLY EQUIVALENT

2. $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

						COL A	COL B
p	q	r	q ∨ r	p ^ q	p∧r	p ∧(q∨r)	(p ^ q) v (p ^ q)
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	F	Т	Т
Т	F	Т	Т	F	Т	Т	т
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

Since truth values in col A and col B are identical $p \land (q \lor r) = (p \land q) \lor (p \land r)$

3. a) ~ $(p \lor q) \equiv ~p \land ~q$

COL A COL B

р	q	~ p	~ q	p v q	~ (p v q)	~ p ^ ~ q
Т	Т	F	F	Т	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	F	Т	Т

Since truth values in col A and col B are identical $\sim (p \lor q) \equiv \sim p \land \sim q$

4. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

		COLA			COL B
р	q	p 🕂 q	$p \rightarrow q$	$d \rightarrow b$	(p → q) ∧ (q → p)
Т	Т	Т	Т	Т	T
Т	F	F	F	Т	F
F	Т	F	Т	F	F
F	F	T	Т	Т	Т

Since truth values in col A and col B are identical $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

5. $p \rightarrow q \equiv \sim q \rightarrow \sim p \equiv \sim p \lor q$

				COL A	COL B	COLC	_
р	q	~ p	q ~	₽ → 0	~ q → ~ p	~ p v q	
Т	Т	F	F	T	Т	Т	
Т	F	F	Т	F	F	F	
F	Т	Т	F	Т	Т	Т	
F	F	Т	Т	Т	т	Т	
T T F F	T F T F	F F T T	F T F T	T F T T	T F T T	T F T T	

7. $(p \lor q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)$

					COL A			COL B
р	q	r	q ∨ r	p v q	(p ∨ q) → r	$p \rightarrow r$	$q \rightarrow r$	$(p \rightarrow r) \land (q \rightarrow r)$
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	F	F	F	F
Т	F	Т	Т	Т	Т	Т	Т	T
Т	F	F	F	Т	F	F	Т	F
F	Т	Т	Т	Т	Т	Т	Т	T
F	Т	F	Т	Т	F	Т	F	F
F	F	Т	Т	F	Т	Т	Т	T
F	F	F	F	F	Т	Т	Т	T

Since truth values in col A and col B are identical $(p \lor q) \rightarrow r = (p \rightarrow r) \land (q \rightarrow r)$

Q4. if p and q are true statements and r, s are false statements, find the truth values

1. p ∨ (q ∧ r)

2.

=

 $= (T \land T) \land (F \land F)$

F

- T A F (RECALL : AND MEIN EK
 - JATHI AND DOOSRI NAHI JATHI ; ITS FALSE)

3. $\sim (p \land \sim r) \lor (\sim q \lor s)$

Replacing by their truth values

$\equiv (T \land \sim F) \rightarrow (T \land F)$	$\equiv \left((T \to T) \to (T \to F) \right) \to (F \to F)$
$= (T \land T) \rightarrow (T \land F)$	$\equiv \left(\begin{array}{ccc} T & \rightarrow & F \end{array} \right) \rightarrow T$
$=$ T \rightarrow F	$= F \rightarrow T$
≡ F	≡ T

Q6. from the following set of statements , identify the pairs of statements having same meaning

2	a) if a man is rich then he buys a car	=	$\frac{R \to C}{}$
	b) if a man is not rich then he does not buy	′acar ≡	$\sim R \rightarrow \sim C$
	c) if a man buys a car , then he is rich	=	$C \rightarrow R$
	d) if man does nor buy a car then he is not	rich ≡	$\sim C \rightarrow \sim R$
	SOLUTION : Since $P \rightarrow Q \equiv \sim Q \rightarrow \sim P$		
	$R \rightarrow C \equiv \sim C \rightarrow \sim R$; statemen	t (a) & (d) ha	ve same meaning

 $C \rightarrow R \equiv \ \sim R \rightarrow \ \sim C$; statement (b) & (c) have same meaning

Q7. Rewrite the statement without using 'conditional'

- a) If productivity increases then wages rise
 - $= P \rightarrow Q$
 - $\equiv \sim P \lor Q$
 - = Productivity does not increase or the wages rise

b) If it is cold , Madhu wears a hat

- $= P \rightarrow Q$
- $= \sim P \lor Q$
- = It is not cold or Madhu wears a hat
- Q8. Rewrite the statement removing the connective 'if and only if' and using the connectives 'not' ; 'or' ; 'and'
 - a) Kiran is rich if and only if he is honest
 - $\equiv P \leftrightarrow Q$
 - $= (P \rightarrow Q) \land (Q \rightarrow P)$
 - $= (~P \lor Q) \land (~Q \lor P)$
 - = Kiran is not rich or He is honest and Kiran is not honest or he is rich

b) The demand falls if and only if the price increases

- $= \mathsf{P} \leftrightarrow \mathsf{Q}$
- $= (P \rightarrow Q) \land (Q \rightarrow P)$
- $\equiv (~P \lor Q) \land (~Q \lor P)$
- E Demand does not fall or price increases and Price does not increase or demand falls

Q9. Write CONVERSE - CONTRA-POSITIVE - INVERSE for the given conditional statements

1. If Ravi is good in Logic then Ravi is good in Mathematics

SOLUTION :	
$LET P \to Q \equiv$	If Ravi is good in Logic then Ravi is good in Mathematics
CONVERSE :	$Q \rightarrow P$
	If Ravi is good in Mathematics then he is good in Logic
CONTRAPOSITIVE :	$\underline{\sim Q \rightarrow \sim P}$
	If Ravi is not good in Mathematics then he is not good in Logic
INVERSE :	$\sim P \rightarrow \sim Q$
	If Ravi is not good in Logic then he is not good in Mathematics

2. If function is differentiable then it is continuous

SOLUTION :

LET $P \rightarrow G$	} ≡	If function is differentiable then it is continuous
CONVERSE	:	$Q \rightarrow P$
		If the function is continuous then it is differentiable
CONTRAPOSIT	IVE :	$\sim Q \rightarrow \sim P$
		If the function is not continuous then it is not differentiable
INVERSE	:	$\underline{\ } \stackrel{\sim}{} \stackrel{P}{\rightarrow} \stackrel{\sim}{\sim} \stackrel{Q}{Q}$
		If the function is not differentiable then it is continuous

3. if a man is a bachelor , then he is unhappy

······································	
SOLUTION :	SOLUTION :
LET $P \rightarrow Q \equiv$ if a man is a bachelor then he is unhappy	$LET P \to Q \equiv$
CONVERSE : $\mathbf{Q} \rightarrow \mathbf{P}$ If man is unhappy then he is a bachelor	CONVERSE :
CONTRAPOSITIVE : $\sim Q \rightarrow \sim P$	CONTRAPOSITIVE :
INVERSE : $\sim P \rightarrow \sim Q$	INVERSE :
If a man is not a bachelor then he is happy	
The crop will be destroyed if there is a flood	The crop will be a
SOLUTION :	SOLUTION :
LET $P \rightarrow Q$ = if there is a flood then the crops will be destroyed	LET $P \rightarrow Q \equiv$
$CONVERSE : Q \rightarrow P$	CONVERSE :
If the crop will be destroyed then there is a flood	
CONTRAPOSITIVE : $\sim \mathbf{Q} \rightarrow \sim \mathbf{P}$ If the crop will not be destroyed then there is no flood	CONTRAPOSITIVE :
INVERSE : $\sim P \rightarrow \sim Q$ If there is no flood then the crop will not be destroyed.	INVERSE :
in there is no nood then the crop will not be destroyed	

5. A family becomes literate if the women in it are literate

SOLUTION :

4.

LET $P \rightarrow Q$ = if the women in the family are literate then the family becomes literate

 $\mathsf{CONVERSE} \qquad : \quad \mathsf{Q} \to \mathsf{P}$

If the family becomes literate then the women in the family are literate

$\mathsf{CONTRAPOSITIVE}: \ \sim \mathsf{Q} \rightarrow \sim \mathsf{P}$

If the family does not become literate then the women in the family are not literate

INVERSE : $\sim P \rightarrow \sim Q$

if the women in the family are not literate then the family does not becomes literate

6. Quadrilateral is a rhombus only if it is a parallelogram

SOLUTION :	
LET $P \rightarrow Q \equiv$	if the quadrilateral is a rhombus then it is a parallelogram
CONVERSE :	$\underline{Q} \to P$
	if the quadrilateral is a parallelogram then it is a rhombus
CONTRAPOSITIVE :	$\underline{\ } \begin{array}{c} \sim Q \rightarrow \sim P \end{array}$
	if the quadrilateral is a not parallelogram then it is not a rhombus
INVERSE :	$\sim P \rightarrow \sim Q$ if the quadrilateral is not a rhombus then it is not a parallelogram
	· · · · · · · · · · · · · · · · · · ·

Q10. Write the NEGATIONS of the following statements

De Morgan's Law

$$\sim (p \lor q) \equiv \sim p \land \sim q$$
$$\sim (p \land q) \equiv \sim p \lor \sim q$$

1. Tajmahal is in India and Everest is in Nepal

Using	:	$\sim (P \land Q) \equiv \sim P \lor \sim Q$		
Negation	:	Tajmahal is not in India	OR	Everest is not in Nepal

2. Madhu is fair and Mahesh is intelligent

Using	:	$\frac{\sim (P \land Q) \equiv \sim P \lor \sim Q}{\sim}$	2	
Negation	:	Madhu is not fair	OR	Mahesh is not intelligent

3. policeman is honest and he is not rich

Using	:	$\frac{\sim (P \land Q) \equiv \sim P \lor \sim Q}{\sim}$		
Negation	:	Policeman is honest	OR	he is rich

4. It is cold or it is raining

Using	:	$\sim (P \lor Q) \equiv \sim P$		
Negation	:	It is not cold	AND	it is not raining

5. I will have tea or coffee

Using	:	$\frac{\sim (P \lor Q) = \sim P \land \sim Q}{\sim}$	_	
Negation	:	I will not have tea	AND	I will not have coffee

6. 5 is prime number or 20 is a composite number

Using	:	$\frac{\sim (P \lor Q) \equiv \sim P \land \sim Q}{\sim}$		
Negation	:	5 is not a prime number	AND	20 is not a composite number

7. the question paper is easy or we shall pass

Using	:	$\underline{\sim (P \lor Q) \equiv \sim P \land \sim Q}$	
Negation	:	the question paper is not easy AND we shall not pass	

8. Ram is intelligent but lazy

Using	:	$\sim (P \land Q) \equiv \sim P \lor \sim Q$				
Negation	:	Ram is not intelligent	OR	Ram is not lazy		

09. Kitchen is small but neat

Using	:	$\frac{\sim (P \land Q) \equiv \sim P \lor \sim Q}{\sim}$		
Negation	:	Kitchen is not small	OR	Kitchen is not neat

10. the teacher must have both charisma and diplomacy

Using	:	$\underline{\sim}(P \land Q) \equiv \sim P \lor \sim Q$
Negation	:	the teacher must not have charisma OR she must not have diplomacy

11. 10 > 5 and 2 < 7

Using	:	$\underline{\sim (P \land Q) \equiv \sim P \lor \sim Q}$
Negation	:	10 is not greater than 5 OR 2 is not less than 7

12. Ashok reads daily news paper DNA or TOI

Jsing	:	~(P	v Q)) = ~	P ^	~ Q
-------	---	-----	------	-------	-----	-----

Negation : Ashok does not read daily newspaper DNA AND Ashok does not read

 $\sim (\mathsf{P} \rightarrow \mathsf{Q}) \equiv (\mathsf{P} \land \sim \mathsf{Q})$

Recall How To Remember : When is implies false ?

When Ali is going and Bob is not going

13. If ABC is triangle then $\angle A + \angle B + \angle C = 180^{\circ}$.

Using	:	$\sim (P \to Q) \equiv P \land \sim Q$	
Negation	:	ABC is a triangle and	$\angle A + \angle B + \angle C \neq 180^{\circ}.$

- _____
- 14. if the diagonals of a parallelogram are perpendicular then it is a rhombus

Using : $\sim (P \rightarrow Q) \equiv P \land \sim Q$

- Negation : Diagonals of parallelogram are perpendicular and it is not a rhombus
- 15. if question paper is easy then Pravin will pass
 - Using : $\sim (P \rightarrow Q) \equiv P \land \sim Q$
 - **Negation** : Question paper is easy and Pravin will not pass

16. if the lines are parallel then their slopes are equal

Using	:	$\sim (P \rightarrow Q) = P \land \sim Q$
Negation	:	lines are parallel and their slopes are not equal

17. if monsoon is good then farmers are happy

Using	:	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Negation	:	Monsoon is good and farmers are not happy

18. if 2 + 5 = 10 then 4 + 10 = 20

Using	:	$\sim (P \rightarrow Q) \equiv P \land \sim Q$
Negation	:	$2 + 5 = 10$ and $4 + 10 \neq 20$

19. If it snows then Gajashri does not drive the car

Using	:	$\sim (P \rightarrow Q) = P \land \sim Q$
Negation	:	It snows and Gajashri does drive the car

 $\sim (p \leftrightarrow q) = (\sim p \land q) \lor (p \land \sim q)$ Recall How To Remember : Ali is going and Bob is not going OR Bob is going and Ali is not going 20. Price increases if and only if Demand falls Using : $\sim (P \leftrightarrow Q) = (P \land \sim Q) \lor (Q \land \sim P)$ Negation : Price increases and demand does not fall OR

Demand falls and price does not increase

21. Tomorrow will be Monday if and only if today is Sunday

Using	:	$\sim (P \leftrightarrow Q) \equiv (P \land \sim Q) \lor (Q \land \sim P)$
Negation	:	Tomorrow will be Monday and today is not Sunday

OR

Today is Sunday and Tomorrow will not be Monday

22. Rajdhar is successful if and only if he is hardworking

Using	:	~(P ↔	Q) ≡	(P ^ ~ Q)	∨ (Q ∧ ~ P)	

Negation : Rajdhar is successful and he is not hardworking

OR

Rajdhar is hardworking and he is not successful

23. A student will get a seat to M.B.A. if and only if he is rich

- Using : $\sim (P \leftrightarrow Q) \equiv (P \land \sim Q) \lor (Q \land \sim P)$
- Negation : A student will get a seat to MBA and he is not rich

OR

The student is rich and he will not get a seat to MBA

24. $(a + b)^2 = a^2 + b^2$ if and only if ab = 0

Using :
$$\sim (P \leftrightarrow Q) = (P \land \sim Q) \lor (Q \land \sim P)$$

Negation : $(a + b)^2 = a^2 + b^2$ and $ab \neq 0$

OR

ab = 0 and $(a + b)^2 \neq a^2 + b^2$

EVERYTHING KA SOMETHING

SOMETHING KA NOTHING

NOTHING KA SOMETHING

Q11. write NEGATIONS of the following

1. every student from this class passed

We change 'Everything' to 'Something'

Negation : Some students from this class did not pass

2. all students are sincere

We change 'Everything' to 'Something'

Negation : Some students are not sincere

3. all politicians are corrupt

We change 'Everything' to 'Something'

Negation : Some politicians are not correct

4. All natural numbers are integers

We change 'Everything' to 'Something'

Negation : Some natural numbers are not integers

5. All parents care for their children

We change 'Everything' to 'Something'

Negation : Some parents do not care for their children

6. all girls are made of sugar or honey

We change 'Everything' to 'Something'

Using : $\sim (P \lor Q) \equiv \sim P \land \sim Q$

Negation : Some girls are not made of sugar and honey

7. some dogs are intelligent

We change 'Something' to 'Nothing'

Negation : No dog is intelligent

8. Some students of the standard XII are eighteen years old

We change 'Something' to 'Nothing'

Negation : No student of standard XII is eighteen years old

9. Some buildings in this area are multistoried

We change 'Something' to 'Nothing'

Negation : No building in this area is multistoried

10. No man is animal

We change 'Nothing' to 'Something'

Negation : Some men are animals

11. No policeman is polite

We change 'Nothing' to 'Something'

Negation : Some policemen are polite

12. some bosses are good

We change 'Something' to 'Nothing'

Negation : No boss is good

13. Some members of the Indian cricket team are not committed

Recall here we decided that since there is a 'not' in the given statement we will not change 'Something' to 'Nothing' but will change it to 'Everything' so that we get chance to drop the 'not'

We change 'Something' to 'Everything'

Negation : Every member of the Indian cricket team is committed

14. Some students have not paid the fees

We change 'Something' to 'Everything'

Negation : Every student has paid the fees

15. every integer is a rational and every rational is a real

We change 'Everything' to 'Something'

Using : $\sim (P \land Q) \equiv \sim P \lor \sim Q$

Negation : Some integers are not rational OR Some rationals are not real

 All students have completed their homework and the teacher is present We change 'Everything' to 'Something'

Using : $\sim (P \land Q) \equiv \sim P \lor \sim Q$

Negation : Some students have not completed their homework

OR

Teacher is not present

17. $\forall n \in N, n + 7 > 8$

Negation : $\exists n \in N$, such that n + 7 is not greater than 8

18. $\forall x \in N$, $x^2 + x$ is an even number

Negation : $\exists x \in N$, such that $x^2 + x$ is not an even number

19. $\exists n \in N$, such that $n^2 = n$

 $\label{eq:Negation} \textbf{Negation} \quad : \quad \forall \ n \ \in \ N \ , \ n^2 \neq n$

20. $\exists x \in R$, such that $x^2 < x$

Negation : $\forall x \in \mathbb{R}, x^2 \ge x$ **OR** $\forall x \in \mathbb{R}, x^2$ is not less than x

21. $\exists n \in N$, such that n + 4 > 9

Negation : $\forall n \in N$, n + 4 is not greater than 9

Q12. Using rules of negation , write down the negation of the following statements

1.
$$(p \land \neg q) \land (\neg p \lor \neg q)$$

Solution: $\sim \left[(p \land \neg q) \land (\neg p \lor \neg q) \right]$
 $\equiv \sim (p \land \neg q) \lor \sim (\neg p \lor \neg q)$ De Morgan's Law
 $\equiv \left[(\neg p \lor \neg (\neg q)) \lor (\neg (\neg p) \land \neg (\neg q)) \right]$ De Morgan's Law
 $\equiv ((\neg p \lor q)) \lor (p \land q)$

2.
$$(\sim p \land \sim q) \lor (p \land \sim q)$$

Solution: $\sim ((\sim p \land \sim q) \lor (p \land \sim q))$
 $\equiv \sim (\sim p \land \sim q) \land \sim (p \land \sim q)$ De Morgan's Law
 $\equiv (\sim (\sim p) \lor \sim (\sim q)) \land (\sim p \lor \sim (\sim q))$ De Morgan's Law
 $\equiv (p \lor q) \land (\sim p \lor q)$

3.
$$(p \land q) \rightarrow (\sim p \lor r)$$

Solution:
$$\sim ((p \land q) \rightarrow (\sim p \lor r))$$

 $\equiv (p \land q) \land \sim (\sim p \lor r) \qquad \dots \sim (P \rightarrow Q) \equiv P \land \sim Q$
 $\equiv (p \land q) \land (\sim (\sim p) \land \sim r) \qquad \dots De Morgan's Law$
 $\equiv (p \land q) \land (p \land \sim r)$

4.
$$p \rightarrow (q \wedge r)$$

Solution :
$$\sim (p \rightarrow (q \land r))$$
= $p \land \sim (q \land r)$ $\sim (P \rightarrow Q) = P \land \sim Q$ = $(p \land q) \land (\sim q \lor \sim r)$ De Morgan's Law

5.
$$(p \rightarrow \sim q) \land (\sim q \rightarrow p)$$

Solution:
$$\sim \left[(p \rightarrow \sim q) \land (\sim q \rightarrow p) \right]$$

 $\equiv \sim (p \rightarrow \sim q) \lor \sim (\sim q \rightarrow p)$ De Morgan's Law
 $\equiv \left[p \land \sim (\sim q) \right] \lor (\sim q \land \sim p)$ $\sim (P \rightarrow Q) \equiv P \land \sim Q$
 $\equiv (p \land q) \lor (\sim q \land \sim p)$

DUALITY

Two compound statements are said to be dual of each other if one can be obtained from the other by replcing v by \land and \land by v and c by t and t by c

Q13. Write DUALS of each of the following

- 1. $(p \lor q) \land r$ 2. $(p \land t) \lor (c \land \sim q)$ DUAL: $(p \land q) \lor r$ DUAL: $(p \lor c) \land (t \lor \sim q)$
- 3. $t \lor (p \land q)$ DUAL: $\underline{c \land (p \lor q)}$ $(p \land \neg (q \lor \neg s))$ DUAL: $(\neg (p \lor q)) \land (p \lor \neg (q \land \neg s))$
- 5. $(p \lor q) \lor r \equiv p \lor (q \lor r)$ DUAL: $(p \land q) \land r \equiv p \land (q \land r)$ $(p \land q) \land r \equiv p \land (q \land r)$ $(p \land q) \land (\sim p \lor q) \equiv \sim p$
- 7. $p \land (\sim q \lor c)$ DUAL: $p \lor (\sim q \land c)$
- 8. $(p \rightarrow q) \lor (q \rightarrow p)$ Solution = $(\neg p \lor q) \lor (\neg q \lor p)$ DUAL :
 - $= (\sim p \land q) \land (\sim q \land p)$

Q14. Write DUALS of each of the following

1. Parth likes milk or tea

Dual : Parth Likes milk and tea

2. Dhanashree is a doctor and she is clever

DUAL : Dhanashree is a doctor or she is clever

3. Manjiri and Hitendra cannot read Urdu

DUAL : Manjiri or Hitendra cannot read Urdu

- 4. Yuvraj or Nirmala are going to Delhi
 - DUAL : Yuvraj and Nirmala are going to Delhi
- 5. If Santosh passes in Accountancy , then Kusum passes in Logic
 - ≡ **p → q**

= ~**p** ∨ **q**

DUAL :

- = ~p ∧ q
- = Santosh does not pass in Accountancy and Kusum passes in Logic

Q15. Express the truth of each of the following statement by VENN DIAGRAM

1. all professors are educated

- P = set of all professors
- E = set of all educated people
- U = set of all human beings

2. Equilateral triangles are isosceles

(It means : - All equilateral triangles are isosceles)

- E = set of all equilateral triangles
- I = set of all isosceles triangles
- U = set of all triangles

3. All rational numbers are real numbers

- Q = set of all rational numbers
- R = set of all real numbers
- U = set of all numbers (complex)

4. co-operative industry is a proprietary firm

(It means : - All co-operative industries are proprietary firm)

- C = set of all cooperative industries
- P = set of all proprietary firms
- $U \equiv set of all firms$
- 5. circle is a polygon

(It means : - All circle are polygons)

- C = set of all circles
- P = set of all polygons
- U = set of all geometrical figures

- (It means : All Sundays are Holidays)
- S = set of all Sundays
- H = set of all Holidays
- U = set of all days in a year
- 7. If a quadrilateral is a rhombus then its is a parallelogram

(It means : - All rhombus are parallelograms)

- R = set of all rhombus
- P = set of all parallelograms
- U = set of all quadrilaterals

8. All natural numbers are real numbers and x is not a natural number

(It means : - All rhombus are parallelograms)

- N = set of all natural numbers
- R = set of all real numbers
- U = set of all numbers (complex)

- 9. Some hardworking students are obedient
 - H = set of all hard working students
 - O = set of all obedient people
 - U = set of all human beings
- 10. Some nonresident Indians are not rich
 - I = set of all non resident Indians
 - R = set of all rich people
 - U = set of all human beings
- 11. Many servants are not graduates
 - S = set of all servants
 - G = set of all graduates
 - U = set of all human beings
- 12. All teachers are scholars and scholars are teachers
 - T = set of all teachers
 - $O \equiv$ set of all scholars
 - U = set of all human beings
- 13. No wicketkeeper is bowler in a cricket team
 - W = set of all wicket keepers
 - B = set of all bowlers
 - U = set of all players in a cricket team
- 14. No naval person is an air force person
 - N = set of all naval persons
 - A = set of all air force persons
 - U = set of all human beings

- 24 -

15 a. There are students who are not scholars

- b. There are scholars who are students
- c. There are persons who are scholars and students

S = set of all students ; H = set of all scholars ; U = set of all human beings

Statement (a)

statement (b) & (c)

- 16. a. Some politicians are actors
 - b. There are politicians who are actors
 - c. There are politicians who are not actors

P = set of all politicians ; A = set of all actors ; U = set of all human beings

statement (a) & (b)

17. Some Isosceles triangles are not equilateral triangles

(Some Isosceles triangles are not equilateral triangles but all equilateral triangles

are isosceles)

- E = set of all equilateral triangles
- I = set of all isosceles triangles
- U = set of all triangles

18. Some rectangles are squares

(Some rectangles are squares and all squares are rectangles)

- R = set of all rectangles
- S = set of all squares
- U = set of all quadrilaterals

19. Some real numbers are integers

(Some real numbers are integers but all integers are real numbers)

- R = set of all real numbers
- $S \equiv$ set of all integers
- U = set of all numbers (complex)

20. Some rational numbers are not integers

(Some rational numbers are not integers but all integers are rational numbers)

- Q = set of all rational numbers
- I = set of all integers
- $U \equiv$ set of all real numbers

21. If n is a prime number and $n \neq 2$, then it is odd

(all prime numbers except 2 are odd)

- $P = set of all prime numbers n , n \neq 2$
- O = set of all odd numbers
- U = set of all real numbers

Q16. Using ALGEBRA OF STATEMENTS prove :

1.	p v (q ^ ~ q)		= p	
	Solution :		p v (q ^ ~ q)	
		=	р∨с	 Complement Law
		=	р	 Identity Law
2.	p v (~ p ^ q)	=	p ∨ d	
	Solution		p v (~ p ^ q)	
		=	(pv~p) ^ (p v q)	 Distributive Law
		=	t ^ (p v q)	 Complement Law
		=	p ∨ q	 Identity Law

3.	~(p v q) v (~ p			
	Solution		~ (p ∨ q) ∨ (~ p ∧ q)	
	-		(~ p ∧ ~q) ∨ (~ p ∧ q)	 De Morgan's Law
	=	I	~ p ∧ (~ q ∨ q)	 Distributive Law
	-		~ p ∧ t	 Complement Law
	-	I	~ P	 Identity Law
4.	p∧((~p∨ q)∨	/~ (1	
	Solution		$p \wedge ((\sim p \vee q) \vee \sim q)$	
	=	I	p ^ (~ p v (q v ~ q))	 Associative Law

 $= p \land (\sim p \lor t) \qquad \dots \qquad Complement Law$ $= p \land t \qquad \dots \qquad Identity Law$ $= p \qquad \dots \qquad Identity Law$

5.
$$[p \land (q \lor r)] \lor [(\sim r \land \sim q) \land p] \equiv p$$

•

Solution		$\left(p \land (q \lor r) \right) \lor \left(p \land (\sim q \land \sim r) \right)$	 Commutative Law
	=	$p \land (q \lor r) \lor (\sim q \land \sim r)$	 Distributive Law
	=	p ∧ t	 Complement Law
	=	р	 Identity Law

 $(p \land q) \lor (p \land \neg q) \lor (\neg p \lor \neg q) \equiv t$ 6. $\left(\begin{array}{ccc} (p \land q) \lor (p \land \neg q) \right) \lor (\neg p \lor \neg q)$ Solution = $(p \land (q \lor \sim q)) \lor (\sim p \lor \sim q)$ Distributive Law (p ∧ t) v (~ p v ~ q) Complement Law = = p v (~ p v ~ q) Identity Law = (p v ~ p) v ~ q Associative Law Complement Law t v∼q = Identity Law t

7.	(p ^ q) v	(p ^ ~	q) \vee (~ p \wedge ~q) \equiv p \vee ~q		
	Solution		$\left((p \land q) \lor (p \land \neg q) \right) \lor (\neg p \land \neg q)$)	
		=	[p ^ (q v ~ q)] v (~ p ^ ~ q)		Distributive Law
		=	(p ^ t) v (~ p ^ ~ q)		Complement Law
		=	p v (~ p ^ ~ q)		Identity Law
		=	(p v ~p) ^ (p v ~q)		Distributive Law
		=	t <pre>< (p < ~ q)</pre>		Complement Law
		=	(p v ~q)		Identity Law

8. $(p \lor q) \land \sim p \rightarrow q$ is a tautology

Solution		$[(p \lor q) \land \sim p] \rightarrow q$	
	=	$((p \land \sim p) \lor (q \land \sim p)) \rightarrow q$	 Distributive Law
	=	$\left[c \lor (q \land \sim p) \right] \rightarrow q$	 Complement Law
	=	$(q \land \sim p) \rightarrow q$	 Identity Law
	=	~ (q ^ ~ p) v q	 $P \rightarrow Q \equiv \sim P \lor Q$
	=	(~ q ∨ p) ∨ q	 DeMorgan's Law
	=	q v (~q v p)	 Commutative Law
	=	(q v ~ q) v p	 Associative Law
	=	t v p	 Complement Law
	=	t	 Identity Law